Welcome to the OPTML Group

About Us

OPtimization and Trustworthy Machine Learning (OPTML) group is an active research group at Michigan State University. Our research interests span the areas of machine learning (ML)/ deep learning (DL), optimization, computer vision, security, signal processing and data science, with a focus on developing learning algorithms and theory, as well as robust and explainable artificial intelligence (AI). These research themes provide a solid foundation for reaching the long-term research objective: Making AI systems scalable and trustworthy.

As AI moves from the lab into the real world (e.g., autonomous vehicles), ensuring its safety becomes a paramount requirement prior to its deployment. Moreover, as datasets, ML/DL models, and learning tasks become increasingly complex, getting ML/DL to scale calls for new advances in learning algorithm design. More broadly, the study towards robust and scalable AI could make a significant impact on machine learning theories, and induce more promising applications in, e.g., automated ML, meta-learning, privacy and security, hardware design, and big data analysis. We seek a new learning frontier when the current learning algorithms become infeasible, and formalize foundations of secure learning.

We always look for passionate students to join the team in terms of RA/TA/externship/internship/visiting students (more info)!

Representative Publications

Authors marked in bold indicate our group members, and “*” indicates equal contribution.

Trustworthy AI: Robustness, fairness, and model explanation

Scalable AI: Model & data compression, distributed learning, black-box optimization, and automated ML

Sponsors

We are grateful for funding from Michigan State University, MIT-IBM Watson AI Lab, DARPA, Cisco Research, NSF, DSO National Laboratories, LLNL, ARO, Amazon Research.



News

11. February 2025

Our ICLR’25 paper titled When is Task Vector Provably Effective for Model Editing? A Generalization Analysis of Nonlinear Transformers is selected for an Oral (1.8% acceptance rate)

5. February 2025

PI Liu is honored to receive the 2025 Withrow Rising Scholar Award from Michigan State University’s College of Engineering. This prestigious award annually recognizes junior faculty for excellence in instruction, scholarship, and distinguished service to the university and student body.

28. January 2025

Congratulations to Yihua Zhang for receiving the prestigious IBM PhD Fellowship Award and the CPAL Rising Star Award.

27. January 2025

Congratulations to Brian Zhang for being named one of the Top 300 Scholars of the 84th Annual Science Talent Search in 2025 for his project Elevating Visual Prompting in Transfer Learning via Pruned Model Ensembles: No Retrain, No Pain conducted during his high school externship at OPTML mentored by Yuguang Yao.

22. January 2025

One paper in ICLR’25, offering a theoretical understanding of task vectors and their application to LLM unlearning (see paper).

21. December 2024

Honored to be one of the 10 recipients of the Amazon Research Award for Spring and Winter 2024

8. December 2024

Check out the OPTML Menu of Innovations @ NeurIPS 2024!

28. November 2024

Thrilled to announce that our position paper, Rethinking Machine Unlearning for LLMs, has been accepted for publication in Nature Machine Intelligence. Congratulations to the team and our amazing collaborators for achieving this milestone!

... see all News